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Various numerical procedures have been used for the direct discretization of the 
relevant equations governing the flow of radiation through materials which scatter, emit, 
and absorb that radiation. The solution of certain problems has in practice required 
procedures which are unconditionally stable; such procedures have been developed for 
which numerical tests have indicated unconditional stability for problems of interest. 
Generally, however, proofs of unconditional stability have been given only for grey or 
one-group problems with no account being taken of the coupling over different frequency 
groups. In the present paper we give a stability analysis for the Eddington approach 
which takes into account this coupling over different frequency groups. We consider 
difference equations similar to the corresponding equations used successfully in Ref. [l]. 
These equations are not fully implit since it was found necessary to include certain terms in 
the difference equations in an explicit manner in order to avoid prohibitively long 
calculation times for multifrequency initial-boundary value problems (cf. Ref. [l]). On 
the other hand it was crucial in Ref. [l] that the equations be unconditionally stable. We 
prove here that the given scheme is indeed unconditionally stable for the initial value 
problem with multifrequency scattering, emission, and absorption of radiation. Our 
proof is direct and is based on an estimate for a certain energy norm of the solution. 

1. INTRODUCTION 

The equation of radiative transfer governing the flow of radiation through 
materials assumed to be in local thermodynamic equilibrium can be given quite 
generally as 

( 
J-~+a.v+r)z=ra+s, (l-1) 
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MULTIFREQUENCY EDDINGTON EQUATIONS 357 

where I = Z(8, V, r, t) is the specific intensity of radiation with frequency v at 
position r in direction Sz at time t, and the term S = S(l; 8, v, r, t) accounts for 
the scattering processes (cf. Ref. [2]). The term p is the absorption coefficient 
corrected for stimulated emission and B is the emissive source function; both are 
properties of the material through which the radiation flows and depend also on 
the frequency v, and both are determined functionally by the assumption of local 
thermodynamic equilibrium. For example, the source function B = B(v, f3) is 
given in terms of the material temperature 8 by the well-known Planck law 

B(v, 0) = F (eV - 1)-l. U-2) 

The material temperature 0 appearing in (1.2) is itself a functional of the radiation 
field including all frequencies. Specifically, letting E, denote the internal energy 
density of the material, and neglecting hydrodynamics for the purpose of this 
analysis,l then the internal energy equation can be given as (cf. Refs. [l, 31) 

00 ah 
at - - o ‘CL c I [ 5 B(v, 6) - E] dv, (1.3) 

where E denotes the radiation energy density defined as 

E = E(v, r, t) = f j I(8, v, r, t) dQ, (1.4) 

with the latter integration being taken over all directions (i.e., Q ranges over the 
surface of the unit sphere). Assuming, as is customary, that E, is a known function 
0f 8, 

E - 49, m- 

and using (1.2), the internal energy equation (1.3) can then be rewritten as 

Emye) $ = - /r cp [es $ B (5, I) - E] dv. (1.5) 

The quantity E,‘(e) = dem/dtJ is the specific heat of the material. 
Finally, then, it is seen that Eqs. (1. l), (1.2), (1.4), and (1.5) yield a highly 

coupled system of equations involving all frequencies 0 < v < co. It is not sur- 
prising that exact solutions have been found analytically only in very special cases. 
Consequently numerical procedures have been developed for use in solving various 

1 The material is assumed to be of unit density, and at rest. 
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classes of problems of interest (see Refs. [l, 3-51 for methods involving direct 
discretizations of the relevant equations). 

Considerations of stability are exceedingly important for such numerical 
procedures, and have been given, for example, in Refs. [5-91 where, however, 
no account has been taken of the coupling over different frequency groups.2 We 
are concerned in the present paper with a stability analysis for the variable 
Eddington approach which takes into account this frequency coupling. 

2. THE VARIABLE EDDINGTON EQUATIONS 

Allowing for conservative scattering, the first two moments of Eq. (1.1) can be 
given as (cf. Ref. [2]) 

where u = ~(v, r, t) is the scattering cross section and where E, F, and P are the 
radiation energy density, flux vector, and pressure tensor respectively, defined as 
(see (1.4)) 

E = E(v, r, t) = k 1 l(!(sz, v, r, t) dQ, 

F = F(v, r, t) = j Z(-) S &, 

and 

P = P(v, r, t) = k 
I 

I(.) fi~S2 dL? 

The crucial assumption in the variable Eddington approach involves the method 
of terminating the sequence of moment equations. For one dimensional plane 
or spherical geometry the variable Eddington factor f = f(v, r, t) is defined by 
the relation 

P=fE, (2.2) 

e A reviewer has called to our attention Ref. [14], where unconditional stability is proved in a 
certain sense (though not in our sense) for a discretization of the multigroup equations of reactor 
point kinetics for one delayed neutron group. Our methods differ from those of Ref. [14]. 
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where P denotes either P,, or P,, in either plane or spherical geometry. Although 
f is defined by (2.2), the important point is that it may in practice be evaluated 
by independent analysis. Eddington [lo] first used (2.2) with f = f as an approxi- 
mation in studying the interior of a star, while approaches for the evaluation 
of the variable Eddington factor in more general situations may be found in 
Refs. [l, 11, 121. 

Using (2.2) we may rewrite (2.1) in plane geometry as 

g+g=cp(+B-E), 

$+c2&(fE)= -c(p+ua)F, 

(2.3) 

where for the purposes of the present analysis we now consider the variable 
Eddington factor f to be known. 

Recalling that B is given by (1.2), we find that the equations to be solved are 
(1.5) and (2.3) for the radiation energy density E = E(v, x, t), the radiation flux 
F = F(u, x, t), and the material temperature 6 = 0(x, t), subject to appropriate 
initial and boundary conditions. 

Concerning the boundary conditions, one sees upon rewriting (2.3) in charac- 
teristic form that the following quantities U and V propagate (in time) spatially 
to the right and left, respectively, where 

U=E+---= ’ F, 
cv’f 

V=E-- ’ F. 
df 

Hence the values of U may be prescribed at a left boundary while the values of V 
are given at a right boundary. In practice the boundary conditions are often 
specified in terms of E and F, and the required data for U and V (or their equivalent) 
are then retrieved from the given boundary conditions. 

Initial conditions are given specifying the values of E, F, and 8 (or equivalently 
U, V, and 0) at some fixed time, say t = 0. 

3. DISCRETIZATION INTO FREQUENCY GROUPS 

We partition the frequency interval 0 < v < cc into J subintervals as 

0 = v,, < V I  < v2 < “* < VJ- ,  < VJ = a, 
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and rewrite Eq. (1.5) as 

%n’(Q g = - jil /‘j 
“9-l 

cp [03+(+ 1) -El dv. 

Letting a denote the number 

(3.1) 

NV, 1) do, (3.2) 

and setting 

we then approximate (3.1) as 

- = -K i cpj[@bj - E,], 
a@ 
at j=l 

(3.3) 

where 

K = 4a 
83 

E,Io’ 

and where pI denotes an average value of ,u for v on the j-th subinterval 
vj-1 < v < vj ,3 while Ej denotes 

Ej = Ej(x, t) = 1” E(v, x, t) dv. 
“i-1 

The numbers bj (j = 1,2,..., .I) are defined by 

abj = $ s vj/9 No, 1) da, “j-110 
so that in particular there holds (see (3.2)) 

C bj = 1. 
j=l 

(3.4) 

s The Planck average is used in Ref. [l] for pj both in equation (3.3) and in the first equation 
of (3.5) below, while the Rosseland average is used in the last equation of (3.5) so as to obtain 
proper limiting behavior for the solution in the optically thin and diffusion cases. For simplicity, 
our analysis is based on using the same average for p5 in all equations. 
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Finally we integrate both sides of the equations of (2.3) with respect to v over 
the j-th frequency group viVl < v < vj , and approximate the resulting equations 
as 

2 + fg = qL#Dbj - E,], 
(3.5) 

!$ + C’ g (J;Ej) = --c(/.L~ + ~j) Fj 9 j = 1, 2 ,...) J, 

where uj and f* denote approximate values of a and f for vjml < v < vj and Fj 
denotes 

Fj = F~(x, t) = S”’ F(v, Xy t) dv. 
v,-1 

Hence we have the approximate equations (3.3) and (3.5) which are to be solved 
for !#J = @(x, t), Ej = Ej(x, t), and Fj = Fj(x, t) subject to appropriate initial and 
boundary conditions. These equations are further discretized with respect to x 
and t, and the resulting discrete equations are finally solved. 

The coefficients pi, a,, bj , h, and K are treated explicitly in Ref. [l]; their 
values are computed as functions of x at a time level t and then held ftxed while 
advancing the solution in time to level t + dt, after which new values of the coeffi- 
cients are computed. For purposes of the present analysis we shall assume that 
the coefficients pj , uj , and K are known nonnegative functions of x independent 
of t, and we assume that bj and fj are known positive constants with b, ,..., bJ 
satisfying (3.4). This amounts to a certain linearization of the equations. We also 
introduce new flux variables & by the formula 

51 = + Fj 
c f5 

(j = l,..., J). 

Then the equations (3.3) and (3.5) can be given as 

3 + C Gj 2 = -C&j + uj) iJj 9 j = 1, 2 ,..., J, (3.6) 

a@ 
- = -K i cp,(@bi - &). 
at j-1 
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Finally, we find it convenient to choose the frequency partition 0 = v,, < v1 < *** 
< vJwl < vJ = 03 so that the positive weights b, ,...) bJ are all equal (see (3.4)), 

b, = ; for j = l,..., J. (3.7) 

This amounts to using a special Lagrangian coordinate system in frequency space. 

4. THE DIFFERENCE EQUATIONS; STABILITY 

We consider the initial value problem for the hyperbolic system (3.6). Specifically 
we seek functions Ej = E,(x, t), & = g&x, t) (j = I, 2 ,..., J), and @ = @(x, t) 
satisfying (3.6) in the region - co < x < co, t > 0 and subject to the usual initial 
conditions 

@(xv 01, E&L O), and Mx, 0) prescribed 

for j = l,..., J on --oo<x<co at t=O. (4.1) 

Let the region -co < x < co, t 3 0 be covered with a lattice of discrete points 
with coordinates (xi , tn) given as 

xi = iAx, i = 0, *1, f2 )...) 

t, = ndt, n = 0, 1, 2 ,...) 

where for simplicity we use constant mesh widths Ax and At throughout. Then 
setting E& = Ej(xi , t,), 82 = &(x<, t,), djia = @(xi, t3, pii = pj(xi), uii = uj(xi), 
and IQ = K(xJ, we consider the following difference analog of (3.6), 

= --C(/Aij + flij) Sz+‘, (4.2) 

The forward and backward spatial differences appearing respectively in the first 
and second equations of (4.2) are used in order to take into account a symmetric 
portion of the domain of dependence of the system (3.6), and lead to improved 
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accuracy for the difference scheme as compared with similar noncharacteristic 
first-order accurate schemes with other nonsymmetric forms for the spatial 
differences (cf. Ref. [13]). 

The equations (4.2) are partially explicit due to the term EG appearing in the 
sum in the last equation. This formulation has been deemed necessary (rather 
than a fully implicit scheme which should be more stable) so as to make the 
resulting linear algebraic equations simple (cheap) to solve for the initial-boundary 
value problem on a bounded interval. In fact we can use the last two equations 
of (4.2) to eliminate pi-l and @+l in the first equation of (4.2), and the resulting 
system of simultaneous linear equations for E n+l can then be simply solved since 
it has a coefficient matrix of tridiagonal form (cf. Ref. [l]). 

Along with (4.2) we have discretized initial values gotten similarly from (4.1), 

@t, Eipj , j-J& prescribed for i = 0, &l, f2 ,..., j = 1, 2 ,..., J (4.3) 

We shall use a vector Xn to denote any solution of (4.2) evaluated at time 
t, = nA t, where 

X” = {EE , 3: , oin j = l,..., J; i = 0, hl,... >. (4.4) 

Also we shall use the following energy (ZJ norm Ij * 11 defined by the formula 

II Xn II2 = 5 f {Ki[(l + cpii AtKQ2 + (5;)21 + (@; b,)“>. (4.5) j=1 i=-m 

We consider initial data (4.3) for which /I X0 11 < co, and then study “physically 
reasonable” solutions of (4.2) for which // Xn /I remains finite for each fixed n, 

IIW < KL, (4.6) 

for some suitable constant K, depending in general on the particular solution 
considered and on the time level n. In fact on physical grounds we need only con- 
sider solutions for which the energies and fluxes decay to zero as x = iAx -+ fcq 
which amounts to the condition (4.6). 

We shall say that the difference scheme (4.2) is unconditionally stable if there 
holds an estimate of the form 

II xn II < c * II x0 II 

for some fixed constant C independent of n and for all solutions satisfying (4.6) 
and for all At > 0.4 In this case the numbers jl Xn II (which are finite for each 
fixed n) cannot grow unduly with increasing n. 

p The constant C is independent of dt and independent of the particular solution considered. 
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THEOREM. The dlyerence scheme (4.2) is unconditionally stable. In fact, 

II X” /I G II x0 II (4.7) 

for all n and any At > 0. 

Proof. We multiply the first equation of (4.2) by K~.E~~‘, the second equation 
by K$‘$~~‘, and the last equation by @r+lbj2. Upon adding the resulting expressions 
and summing over j we find after some manipulation the result 

iJ i( K 1 + C At ,Uij)(Eg+‘)’ + Ki[l + c At(pij + oij)l(Sz’1)2 

+ [1 + KiC At& * b)](@;+1bj)2 

+ K~C At[@;?’ + (pi * Et”) bi] @pi”+‘bi}, (4.8) 

where 

Using the simple inequality ab < (a” + b2)/2 which holds for all real numbers a 
and b, we find easily the estimate 

gl {~i(EiiE;+~ + g;s;+‘) + (@i”bi)(@;+lbi)) 

+ 4 j$l {KJ(EE+‘)’ + <?j~+‘“>“l + (W1b321. (4.9) 



MULTIFREQUENCY EDDINGTON EQUATIONS 365 

Similarly we find 

i K~C At pijE;+l@;+lbj < 4 i qc At /.Q~{(E$+~)~ + (@)+1bj)2} 
j=l j=l 

(4.10) 

= 4 f: KiC At[pij(EG+‘)” $ (pi * b)(@;+1bi)2], 
i=l 

where we used (3.7) and (3.4) to rewrite the term involving @,+l. Finally we 
consider the last term on the right side of (4.8), where 

Since bj = bit by (3.7), we find upon interchanging the order of the j and j’ sum- 
mations the result 

which can be estimated as in (4.10) with E,; replacing E,?j+’ there. 
Using now the inequalities (4.9) and (4.10) along with the similar inequality 

obtained from (4.1 I), we find from (4.Q after some cancellation, the result 

=& j$ /~i(l + c At /-Q~)(J$‘+~)~+ ~i[l + 2~ At(pii + o,)1(8~~1)2 

Summing this inequality over all i and using (4.5) we find the estimate 

where we used also the result 
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which is easily seen to hold for any solution satisfying (4.6). The stated result (4.7) 
now follows directly from (4.12), completing the proof of the theorem. 

Even though our results refer here to the pure initial value problem, numerical 
tests have indicated that the difference scheme (4.2) is unconditionally stable also 
for the mixed initial-boundary value problem on a bounded interval (cf. Ref. [I]). 
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